skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chakraborty, Mithun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Policy Space Response Oracles (PSRO) interleaves empirical game-theoretic analysis with deep reinforcement learning (DRL) to solve games too complex for traditional analytic methods. Tree-exploiting PSRO (TE-PSRO) is a variant of this approach that iteratively builds a coarsened empirical game model in extensive form using data obtained from querying a simulator that represents a detailed description of the game.We make two main methodological advances to TE-PSRO that enhance its applicability to complex games of imperfect information. First, we introduce a scalable representation for the empirical game tree where edges correspond to implicit policies learned through DRL. These policies cover conditions in the underlying game abstracted in the game model, supporting sustainable growth of the tree over epochs. Second, we leverage extensive form in the empirical model by employing refined Nash equilibria to direct strategy exploration. To enable this, we give a modular and scalable algorithm based on generalized backward induction for computing a subgame perfect equilibrium (SPE) in an imperfect-information game. We experimentally evaluate our approach on a suite of games including an alternating-offer bargaining game with outside offers; our results demonstrate that TE-PSRO converges toward equilibrium faster when new strategies are generated based on SPE rather than Nash equilibrium, and with reasonable time/memory requirements for the growing empirical model. 
    more » « less
    Free, publicly-accessible full text available May 29, 2026
  2. Hansen, Kristoffer Arnsfelt; Liu, Tracy Xiao; Malekian, Azarakhsh (Ed.)
    Empirical game-theoretic analysis (EGTA) is a general framework for reasoning about complex games using agent-based simulation. Data from simulating select strategy profiles is employed to estimate a cogent and tractable game model approximating the underlying game. To date, EGTA methodology has focused on game models in normal form; though the simulations play out in sequential observations and decisions over time, the game model abstracts away this temporal structure. Richer models of extensive-form games (EFGs) provide a means to capture temporal patterns in action and information, using tree representations. We propose tree-exploiting EGTA (TE-EGTA), an approach to incorporate EFG models into EGTA. TE-EGTA constructs game models that express observations and temporal organization of activity, albeit at a coarser grain than the underlying agent-based simulation model. The idea is to exploit key structure while maintaining tractability. We establish theoretically and experimentally that exploiting even a little temporal structure can vastly reduce estimation error in strategy-profile payoffs compared to the normal-form model. Further, we explore the implications of EFG models for iterative approaches to EGTA, where strategy spaces are extended incrementally. Our experiments on several game instances demonstrate that TE-EGTA can also improve performance in the iterative setting, as measured by the quality of equilibrium approximation as the strategy spaces are expanded. 
    more » « less